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A team’s design—the structuring of its resources and flows of knowledge—is an important
element determining its effectiveness. An essential element in achieving a team’s problem-
solving potential is the role that interdependence, in both the task and the organization,
plays in determining the dynamic and emergent system-level properties of the organiza-
tion. In this paper, we present a computational platform for experimentally investigating
the influence of informational dependencies found in the design of a complex system for
exploring their role in determining system behaviors and performance. The approach
presented in this paper is a multiagent simulation of the conceptual design of space
mission plans by Team X, an advanced project design group at NASA’s Jet Propulsion
Laboratory. The algorithm is composed of rich descriptive models of both the team-types
and timing of interactions, collaborative methods, sequencing, rates of convergence- and
the task-primary variables, their behaviors and relations, and the approaches used to
resolve them. The objective is to create an environment of interaction representative of
that found in actual design sessions. Better understanding how the dynamics arising from
organizational and domain interdependencies impact an organization’s ability to effec-
tively resolve its task should lead to the development of guidelines for better coping with
task complexities, suggest ways to better design organizations, as well as suggest ways
for improving the search for innovative solutions. �DOI: 10.1115/1.3066501�
Introduction
So much of a team’s problem-solving effectiveness hinges on

ts design—its context, culture, processes, and models. Changing
team’s design changes what, how, and when information will be

elated—effectually changing the organization’s problem repre-
entation �1�. Unfortunately, the ways in which a team’s design
ay influence its collective representation are numerous, and the
anner in which these changes may influence design effective-

ess is not always recognized nor is the extent of the potential
mpact typically perceived �1�.

In this paper, we present a computational platform designed to
xperimentally investigate the implications of these informational
ependencies. This platform is designed to simulate both the com-
lexity and dynamics of information interaction in a real world
esign environment: a collaborative design group at NASA’s Jet
ropulsion Laboratory �JPL�, Team X, and the conceptual design
f a space mission plan. Accordingly, the models presented are
mbued with social and domain definitions and structures analo-
ous to those populating the actual design environment, each with
he specific intent of creating both the behavioral richness of in-
ividual parameters and an environment of interaction that is
nalogous to that occurring in Team X design sessions. They in-
lude thousands of domain variables, dozens of problem-solving
pproaches, and numerous methods, individualized to each agent,
overning the types and timing of social interactions occurring
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among agents. This type of representational depth is rare in com-
putational organization studies but is an essential element to the
utility of this simulation as it enables a more critical look at the
complex set of interactions occurring in real world design.

The goal in creating this platform is not to find the optimal way
of solving this particular task, nor is it to simulate humans or
theorized cognitive processes. Rather, it is to enable theory build-
ing and hypothesis generation in regard to the patterns of interac-
tion arising in design contexts through controlled experimental
exploration of a team-based computational representation, to al-
low us to study the impact that team and domain structures have
on the design process, and, in the long term, to identify method-
ologies for effectually managing these organizational/domain
complexities.

The object of this study is to move toward a more rigorous
understanding of organizational problem solving to better under-
stand how to more accurately describe, predict, and ultimately
design an organization’s fitness for resolving a given task. The
focus of our efforts centers on identifying the mechanisms and
patterns underlying organizational problem-solving behaviors, the
aim of which is to gain a more precise understanding of the basic
principles that govern organizational problem-solving potential
and to develop a set of generalizable metrics for capturing the
performance implications of organizational designs. The approach
taken is based on the premise that parallels in the structure of
design organizations and the design task can be revealed and that
if the simulation of a complex task using this approach is success-
ful, it should provide a basic approach as well as a potential tool
for effectively structuring design organizations in relation to the
design task in an optimally directed manner.
This paper highlights key features of this simulation.
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1.1 Motivation: Interdependencies in Organization and
ask. Because of the fundamentally interdependent nature of or-
anizational constituents, organizations are frequently viewed as
nherently complex systems �2�. Indeed, interdependence is cen-
ral to the conception of what an organization is and is capable of
3�. Through nonsimple patterns of combination, organizations
requently display dynamic and nonlinear behaviors. These behav-
ors make analytical analyses of organizations intractable and im-
recise �4�. However complicating, the complex characteristics of
rganizations also give rise to important organizational properties.
ncreasing organizational complexity enables more complex orga-
izational level behaviors, resulting in a corresponding rise in the
iversity of organizational behaviors possible �5,6�. Correspond-
ngly, increases in organizational performance have been observed
ith increasing complexity, emergent properties in some cases

nabling performance potentials greater than and unique from the
ggregate of individuals �7,8�. The essential behaviors and perfor-
ance of organizations, therefore, are both complicated by and

eliant on the nonlinearities arising from interdependence.
Complex engineering domains are also characterized by the ex-

stence of strong interdependencies. These can make the process
f designing such a system quite challenging. Nonlinear relations
nd compounding coupling effects can make the system behavior
npredictable. System level, even metasystem, trade-offs may be
ifficult to track and evaluate. At times, these interdependencies
an even make it difficult to converge to an internally consistent
olution, notwithstanding one that meets the myriad design re-
uirements prescribed. But, in a manner similar to that discussed
or organizations, the complex relationships of a design space may
ot only be required but desirable in that they may lead to a
ystem functionality not achievable in less complex design
nstances.

Beyond the relationships between organizational or between
omain parts, there is an important underlying structural corre-
pondence between the structure of a problem domain and the
esign of an organization �9,10�. A central determinant of the
ffectiveness of an organizational design is the structure of the
rganization’s task. There is a strong bilateral relation between the
tructure of a task and the design of an organization, product
nterdependence influencing the degree and location of organiza-
ional interaction �11–15�, and organizational interdependence
orrespondingly influencing the interdependencies of the solution
rchitecture �16,17�. This relation is especially pronounced and its
mpact on the organization’s effectiveness particularly compelling
s the complexity of the task rises. While the parallel nature of
rganizational and problem structures has been studied �e.g.,
18��, this paralleling of organization and task in the presence of
omplex, non-linear properties has been largely neglected in or-
anizational research �17,19�, and methodologies taking advan-
age of that correlation in order to design and manage more effec-
ive organizational networks are accordingly limited. For these
easons, an integrated approach is necessary to capture the intri-
ate interplay between the two.

1.2 Simulating the Complex Interactions in Design. Better
nderstanding how the dynamics arising from organizational and
omain nonlinearities impact an organization’s ability to effec-
ively resolve its task should lead to the development of guidelines
or better coping with task complexities as well as suggest ways
or improving the design of an organization and its search for
nnovative solutions. With this objective in mind, a computational
esign algorithm simulating a collaborative design environment
as developed and is summarized in this paper. The subject of our

omputational simulation is a design group affiliated with NASA’s
PL known as Team X. Team X is the conceptual design group
esponsible for creating JPL’s space mission proposals. Bench-

arking Team X and space mission plans provides a medium
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wherein to define and verify a system whose behaviors are repre-
sentative of the intricate set of interactions found in complex en-
gineering design.

This simulation is an emulative model developed using a sys-
tems theory approach, where myriad individual social and domain
properties were designed and set in an environment of interaction
to collectively produce the more complex systemic properties of
the simulated environment. Then, interwoven into this fabric of
interacting elements is a network-based representation identifying
the relationships between elements of both the social and domain
spaces. In this approach, the elements of both social and domain
spaces are represented in the form of a network graph or relational
matrix. This type of representation is most commonly employed
in the study of social systems, where it is used to analyze organi-
zational properties and behaviors �7,20�. It is also used to analyze
product architectures. The primary methodology in this domain is
known as the design structure matrix �DSM�, and it has found
application as both a systems analysis tool, visualizing and dis-
cussing important relationships for product analysis and re-
engineering, and as a product management tool, tracing the im-
pacts of decisions and as a consensus document �17,21�.

Like our approach, virtual design team �VDT� looked at a com-
putational model for organization design, also using DSM as one
of the foundational tools �18�. VDT allocates resources, aligning
an organizational chart with design activities through analysis of
time, cost, and quality. Our work builds on this foundation but
seeks to align the structure of a design team with the structure of
the task at hand, in our case a very complex task, associating the
cross communication of parts of the team with the design task
requirements and execution. Our approach uses intelligent agents,
each able to simulate and reason about their domain of expertise
within the design team. This approach allows for a generalizable
model and implementation.

The primary contribution of network methodologies is that they
enable the investigator to move beyond simple statements about
individual or small groups of parameters and to focus on the pat-
tern of connections in the network as a whole �20�. This is central
to the description of complex systems as the constraining power
of such systems is not mediated solely through direct links but is
a function of the whole �7�. In this simulation this network repre-
sentation is used to both characterize and set the existence and
distribution of relationships in the system to provide a basis for
generating experimental permutations and a basis for quantitative
analysis.

Viewing the organizational and domain spaces at a scale where
all-important factors are abstracted to knowledge elements and
their interaction, such as the above-described network representa-
tion, is akin to representing these spaces by their most rudimen-
tary constituents. At this scale, the distinction between product
architecture and social structure is removed, and the functional
relationship between the two is inherent in the description of
knowledge networks. An organization’s social, resource, and de-
cision driven dependencies—its individuals’ expertise, collabora-
tive procedures, communication technologies, authority and tech-
nical structures, and even personality and culture directed toward
the characterization and resolution of its given problem—may all
be represented in these rudimentary networks. These organiza-
tional knowledge networks may be compared directly to corre-
sponding networks of the �perceived� reality of the problem do-
main. This knowledge-level view and network modeling of
organizational problem solving was employed in this simulated
approach for its promise in condensing an organization’s many
complexities into its core, essential relationships such that they
may be correlated directly with the corresponding problem repre-
sentation. In this way, the simulation may be used to explore the
essential organizational properties leading to improved problem
solving within the context of the domain being worked, and then

to provide simple extendable measures from which to define
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ethods and tools to design into an organization its desired
roblem-solving properties.

There are several reasons for choosing a computational ap-
roach in investigating this relationship. First, in a computational
pproach the targeted organizational and domain behaviors may
e generated and studied through the definition of basic organiza-
ional and problem building blocks, situating them in an environ-

ent of interaction wherein the behaviors arising from interdepen-
encies may emerge naturally. Second, by taking a computational
pproach the structural characteristics of the two may be experi-
entally controlled and investigated. As in many other empirical

nd computational studies representing a single organization, we
annot claim the generality of our models’ predictive potential
rior to completing supplemental investigations into other indus-
ries and environments. However, we would expect that the sys-
em’s behaviors resulting from the structural dependencies present
n this test case would be analogous to those found in other design
rganizations. The models presented here provide a method to
xperimentally investigate and to design complex design environ-
ents and, we believe, are a significant step toward understanding

he role of structural dependencies on design performance.

Case Study: Team X

2.1 Motivation. In April 1995, NASA’s JPL formed an ad-
anced project design team, Team X. The aim in forming the team
as to improve and accelerate JPL’s conceptual development of
ew missions through the employment of a collaborative dedi-
ated process. There are several aspects of JPL’s Team X and their
ork that make them an enticing candidate for this study. First,

he team’s task space is inherently highly coupled, and to capture
he essential trade-offs and to validate the design require the con-
ideration of a rich set of interdependencies. This drives the
eam’s interactions and results in a process that is highly interac-
ive and fast paced. Second, while the details of analyses and
nteractions vary from mission to mission, the process and struc-
ure of interaction remain predominately consistent. The dedicated
rocedures and personnel, collocated efforts, and concise time
rame make the process repeatable and particularly amenable to
bservation. As Team X and space mission plans are used as both
framework for creating our base model and to ground the result-

ng simulation, we will now briefly describe the two.

2.2 Overview: Team X and Space Mission Plans. The Team
process is team intensive and fast paced, in which participating

ngineers from each of the representative subdivisions are collo-
ated and work concurrently and collaboratively to design a space
ission plan’s defining characteristics. The team consists of a

roup of approximately 20 individuals—16 engineers with exper-
ise in a particular subsystem such as propulsion or programmat-
cs, a systems engineer, a team leader, and customer representa-
ives �see Table 1 for a complete listing�. The pool of subsystem
esigners used in Team X sessions typically have several years of
xperience in their field and participate regularly in the team’s
roposals. The process generally occurs over the course of 1 week
three sessions of 3 h each, with some pre- and postwork, held in
week’s time�, in which time the team conceptually defines and

copes a space mission plan.
The designs produced by the team are conceptual plans defining

ystem architecture, designating resources, and scoping costs and
echnologies. Although conceptual, significant attention to the
nalytical trajectories of and interaction between subsystem pa-
ameters is required to ensure that the plan is feasible. The number
f input variables transferred via the internal network, for ex-
mple, ranges from a dozen to nearly 600 per subsystem. The
epresentational space that Team X is working in is rich and
ighly interdependent. The types of studies undertaken range in
ype from interplanetary missions to telescopes, and their custom-
rs range from internal to JPL to private organizations and univer-

ities.
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A typical proposal proceeds as follows: The beginning of the
first session begins with the customer representative who presents
the mission scope and objectives. The team leader then starts out-
lining system-level design issues including the general approach,
which increases in focus and detail over the sessions. This defines
the major direction or architecture of the solution. From this, in-
dividual subsystem designers begin to define their subsystems us-
ing estimates derived from past studies and heritage missions.
Subsystem designers then work continuously throughout the re-
mainder of the process, listening and participating in the team
leader discussion when it applies to their subsystem. There are
also frequent pair-ups and conversations between subsystem de-
signers, participants moving regularly back and forth between in-
dividual subsystem work, small group work, and orchestrated
team discussions. Each subsystem designer maintains a spread-
sheet containing core analyses and vital subsystem statistics.
These spreadsheets are connected to an internal network so that
each subsystem can send required outputs and can receive perti-
nent inputs from other subsystems throughout the process. The
process culminates in a final report and frequently a presentation
of the final results that outlines the major conceptual features and
considerations of the mission design.

As a result of the interdependence between subsystems, the
process is iterative. Once individuals have set up and initialized
essential preliminary subsystems definitions, they enter an itera-
tive loop updating, reconfiguring and further defining their sub-
systems as they receive updated system and subsystem informa-
tion. As this process continues, the team progresses toward
converging on a solution, the magnitude of design changes de-
creasing over time. Near the end of the study, the team moves into
a rapid iteration, wrap-up phase, quickly updating to make the
final fine scale modifications and finally converging to an inter-
nally consistent solution.

The team rate of convergence will vary from mission to mis-
sion. More routine missions may be essentially completed early in
the third session or late in the second, whereas a more demanding
or unique mission may extend beyond the typical three sessions of
3 h each. Likewise, individuals’ requirements and pacing vary
significantly in this iterative process. Subsystems vary in the de-
gree to which they are coupled with others, vary in the scope and

Table 1 Space mission plan subsystem divisions

Subsystems Stewardship

Attitude control Determine instruments and thrusters to achieve
pointing requirements

Computer system Choose computer equipment and determine
computer system requirements

Configuration Roughly layout subsystem components
Cost Evaluate cost structure
Ground Determine ground support needs:

communication, infrastructure, and hardware
Instruments Determine instruments and properties
Mission design Determine trajectory and compute “delta v”
Power Determine power system configuration and

budgets
Propulsion Choose and size propulsion system
Programmatics Determine the development schedule and

determine programmatic costs and risks
Science Evaluate potential for scientific contribution
Software Determine the required lines of code and

determine software development costs
Structures Estimate structural masses and identify special

structural requirements
Telecom Size and sequence telecom equipment
Thermal Determine thermal system configuration

and budgets
Trajectory Visualization Create trajectory visualizations and compute

geometric details of trajectory
magnitude of their analytical requirements, and vary in their sys-
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em roles, some being primary system drivers and others system
ecipients. The result is that individual subsystems converge at
ubstantially different rates; some completing their initial sub-
ystem definition early in the first session while others would not
omplete it until well into the second. Figure 1 shows the relative
ates of convergence observed for each Team X participant that
e obtained through interviews of the team members �normalized

o the system rate of convergence that has been subdivided into
hree sections characterizing the types of activities taking place�.

The process and environment are very information rich and
ollaborative. By concurrently and collaboratively developing the
pace mission plans, the collocated team is able to resolve trade
ssues in real-time and come to early agreements on design fea-
ures. The process is further facilitated by dedicated facilities,
ools, and consistent familiar procedures. Aside from an individu-
l’s own information, there are multiple sources of information
hat each individual monitors throughout the process. These in-
lude public displays �typically publishing system sheets with ag-
regate measures of the ship such as mass and power require-
ents�, periodic subsystem updates via the internal network,

ackground conversations/noise, and group discussions. To facili-
ate the most common communication interfaces, the room is or-
anized to seat together individuals who interact the most fre-
uently; however, it is not uncommon for discussion groups from
hroughout the room to take place. The environment is often de-
cribed as managed chaos, and individuals selectively attend to
he ambient information influx.

The types and extent of interaction among these subgroup dis-
ussions vary. We observed three general types of design related
nteraction: information updating, collaborative interchange of
references, and iterative interchange of preferences. Information
pdating is the simple request and transfer of information related
o the current and projected state of individuals’ designs. The col-
aborative interchange of preferences is the open discussion of
esign options of mutual interest and impact, typically a qualita-
ive discussion of the relative merits and trade-offs of potential
olutions. Finally, the iterative exchange of preferences is where
ollaborating members will quantitatively analyze and re-analyze
otential solution options until they come to an agreement on the

Fig. 1 Relative rates of progression of in
est mutual solution.
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3 Computational Implementation

3.1 Simulation Overview. The algorithm presented here is a
computational simulation of JPL’s Team X and the conceptual
design of interplanetary space mission plans. The implementation,
as are all models, is an abstraction of the actual team design
environment. As such, there are many possible approaches in
modeling the behaviors targeted. In our implementation, the team
environment is achieved in a multiagent platform through the dis-
tribution and interaction of social and task niches. Each agent, 17
in all representing each subsystem engineer and the systems engi-
neer, is patterned with a representative set of domain models and
collaborative schemata as found in their corresponding Team X
analog.

The algorithm is composed of descriptive models of both the
team—types and timing of interactions, collaborative methods,
sequencing, rates of convergence- and the task-primary variables,
their behaviors and relations, and the approaches used to resolve
them. The objective of these models is to create an environment of
interaction representative of that observed in Team X. They were
designed to create an environment in which the rich interplay
between the task and team structures could emerge naturally.

Altogether, the domain models include over 1000 distinct vari-
ables that together describe a space mission. As in the actual do-
main the problem definitions contain a breadth of problem behav-
iors and requirements and correspondingly require a breadth of
approaches to resolve them. Problem-solving strategies imple-
mented in the algorithm range from the search of databases to
analogical comparisons against heritage missions to iterative
solver loops and multivariate optimization routines. The objective
in putting together these models was to create rich, detailed task
models representative of the primary set of behaviors and interac-
tions characteristic of the actual domain space.

Similarly, team interactions analogous to those observed in
Team X were created. The team models provide the system con-
text for the domain models, determining how they interact to form
and converge on a system solution. Each agent maintains its own
methods and variable sets. They also maintain individualized

idual agents described in team interviews
div
schemata for determining the timing and choice of activities as
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ell as collaborative preferences. As they interact rich ecologies
f relationships among and between agents’ actions and task re-
ated decisions result.

These model definitions were arrived at through an extensive
tudy of the procedures, domain models, and individual schemata
epresented in the team. This case study consisted of a combina-
ion of information gathering methods, including: observational
nalyses, participant interviews, and an in-depth technical review.
ee Table 2 for a review of these methods and a summary of the
ata obtained.

All of the simulation features presented in this paper were de-
igned with the intent of creating behaviors and interactions
nalogous to those observed in Team X sessions. There are five
ays in which the simulation accomplishes this. They are through

1. distribution of social and task constituents
2. procedural analogies
3. information concurrency
4. structuring of knowledge flow
5. definition of domain behaviors

The remainder of this section highlights the main features and
unctioning of the algorithm.1 This includes

1. the overall designed process including the iterative structure,
concurrency simulation, definition of structural relations
through network inputs, and agent schemata types

2. aspects of the task definitions including mission scope, vari-
able types, varying the structures of influence, and the ap-
proaches used to resolve variables

3. and, finally, aspects of the team interactions including infor-
mation updates, sequencing and timing of activities, agent
collaborations, and methods for team facilitating

3.2 The Design Process

3.2.1 System Setup. Prior to beginning the actual design pro-
ess, agents’ memory matrices—used in the algorithm to dictate
euristic preferences and estimations—are initiated in a high-
teration, explorative design loop. In this stage the agent team is

ade to search the problem space through a series of randomly
enerated missions, the intent of which is to prepare agents with a
earned generalization of the domain’s characteristics and behav-
ors. At the completion of each mission, agents individually up-

1The algorithm was implemented in JAVA in just over 100,000 lines of code. There
re 1120 domain methods and nearly 1000 domain variables �on the order of 10,000
hen unpacking the arrays�. It takes 1–2 min on a 2.80 GHz Intel Celeron to run a

Table 2 Case stu

ethod Study subject

ession observations

Four separate design cycles, with project s
from the evaluation of in mission bene

experimental propulsion system to the pla
deep space science mission

eam interviews

Representatives from each participating sub
systems engineer, team leader, and sever

representatives

echnical domain review Reference �22�, public mission docu
omplete design proposal.
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date their preferences based on the state of the resulting design
�for more information on the setup stage or agent’s memory ma-
trices see Ref. �1��.

3.2.1.1 Mission definition and design initiation. To begin the
simulation, a mission file is read in. This file defines the mission
parameters: planetary target; targeted mass, power, and cost caps;
suggested payload, etc. This represents the types of direction and
scope provided by customers prior to beginning actual Team X
design sessions. Once this file is loaded into the system, the de-
sign simulation begins.

3.2.1.2 Main design loop. The overarching structure of the
simulation is iterative, the core element of which is a short design
loop that calls each agent in turn. The structure of the core design
loop itself is straightforward. Each loop typically contains two
agent calls: a systems agent call and a subsystem agent call. The
systems agent is called each design loop to update and publish the
information that, in an actual Team X session, is typically dis-
played to the team throughout the sessions. Following the systems
agent update, a subsystem agent is selected and that agent then
chooses and executes an action based on its progress in complet-
ing and converging on its subsystem design.

Each agent maintains a time stamp designating its time progress
through the sessions. Following the completion of a task, agents
augment their time stamp a designated amount of time. The sub-
system agent call in each design loop is made to the agent with the
lowest time.

The loop then restarts and this continues until the system con-
verges or the session times run out. In this way agents are kept at
the same approximate point in the session, thereby simulating
concurrency.

3.2.1.3 Problem resolution loop and collaboration loops.
There are a few exceptions to the design loop’s basic flow. For
example, if the systems agent �in its turn� determines that the team
is not satisfactorily meeting the customer’s requirements �desired:
launch vehicle, cost, risk, power requirements, ship mass, and/or
science objectives� it may initiate a problem resolution loop. As
with the primary design stages discussed above, each agent main-
tains a collection of activities specific to this system initiated stage
as well. When the problem resolution loop is initiated, then the
system loops through each agent, each of which in turn completes
all of its activities associated with that stage. This loop is intended
to model team discussions initiated by the systems engineer or
team leader.

Another exception, or more accurately an extension, occurs
when an agent’s chosen activity is a collaborative one. When this

methods review

Data type

s ranging
of an
sign of a

Observed the team’s procedures, their environment, and
individuals’ activities and documented interaction types
and behaviors, the social structure as a function of time,
the convergence characteristics of individuals and of the

team, and key team issues

tem chair,
ustomer

Discussions targeted individuals’ domain and social
representations, including individuals’ key

considerations—primary parameters, their interactions
and behaviors, as well as when and how they are

approached—and with whom the individual
communicates as well as when and why

nts

Supplemental technical review of relevant domain
representations and analytical tools, and the mapping of
the issues, models, and tools from those sources to the

described and observed team behaviors �required because
of the proprietary nature of actual Team X models�
dy

cope
fits
n de

sys
al c

me
is the case, the agent calls those agents indicated as having an
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nterest in the parameters being defined, and the group of them
ollectively determines the parameters’ values �discussed in Sec.
.5�. Figure 2 shows a flowchart outlining the design loop.

3.2.1.4 Stages of progression. Agent schemata are defined
uch that agents progress through their individual collections of
ctivities. This is done, for each agent, in stages—each with a
nique collection of activities associated with it. In the early
tages of a design proposal, agents will typically start with a set
p stage, in which agents will set up databases and parameters.
gents then move to the next stage in which important subsystem
arameters are initialized with preliminary estimates. In the fol-
owing stage agents complete their first full iteration defining all
ubsystem parameters. Finally, in the last stage agents loop
hrough the requisite activities updating their subsystem defini-
ions as needed. Through this process, agents progress from the
efinition of customer requirements and rough projections of sys-
em requirements at the start and gradually converge2 to an inter-
ally consistent solution.

3.2.1.5 Individuals’ rate of progression. Although at approxi-
ately the same point in session, individual agents, as in actual
eam X sessions, progress at different rates. Figure 1 shows the
elative rates of progression for each subsystem participant ob-
erved in our case study. To capture these rates of progression and
o temporally align subsystems’ actions within the simulation,
ach action at each design stage was measured against our case
tudy models and assigned a duration commensurate with its du-
ation in Team X sessions. This keeps the time apportioned to
arameter assignment for each agent roughly proportional to that

2It may be worthwhile noting here that the process is not guaranteed to converge.
n the more extreme cases when a system driver, such as ship mass or cost, grows too
arge the process will diverge. To avoid this, these drivers are capped at a prespeci-

Fig. 2 Schematic overview
ed maximum value.
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of Team X. As these agents follow patterns of activity by design
similar to that of Team X, then they progress through the process
maintaining corresponding action to point-in-session
relationships.

Agent concurrency and task apportionment are important as-
pects of this algorithm. They set up the structure to moderate fine
scale action concurrency and to control the state of development
of information across the system at any point in time. They are
important, therefore, in ensuring relational ecologies as a function
of time correlative to those found in Team X.

3.3 Network Formulation. An important feature of the algo-
rithm is a set of network models used essentially as agent repre-
sentations of interdependencies. These networks are used to deter-
mine with whom and on what agents collaborate as well as which
variables to include in their various analyses, thus controlling so-
cial and task relational structures. This network-based platform
enables the control of the team’s structural properties and provides
the basis from which to experimentally modify and analyze the
interaction between task and team structures.

In this study, these relational networks are formulated as matri-
ces, the subjects of the rows and columns are the nodes or parts
that make up the network in question, and the cells of the matrix
correspond to the relationships between those nodes. This formu-
lation is consistent with commonly used techniques for the analy-
sis of social networks �e.g., Refs. �23,24�� and the relationships of
product architectures �e.g., Ref. �17��. Matrices for both social and
problem relationships found in Team X were created, done by
mapping out the relationships between all of the system’s vari-
ables, tasks, and agents.

At the beginning of the program, the algorithm reads in these
matrices and parses them into submatrices befitting each indi-
vidual agent. Matrices created for input include a system variable-

the algorithm’s design loop
to-variable matrix, an agent task-to-system variable matrix, and
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n agent-to-agent task matrix. These, then, define the agents’ net-
orks of interdependence. When an agent chooses a collaborative
roblem-solving method, it refers to the agent-task matrix to iden-
ify which other agents are linked to that task and calls them to
articipate in resolving it. Likewise, each time an agent calls a
omain method, it refers to the variable-variable matrix to identify
hich of the required variables are assigned to influence the meth-
d’s return value. If the matrix indicates a relationship, the vari-
ble value is used. If not, a constant average value is used instead
so that the current value of the variable has no effect on the
utcome of the output variable�.

In the actual Team X design, individuals interact based on their
erception of interdependence. If they believe that parameters
rom another subsystem will significantly affect the quality of
heir design or vice versa, they will initiate a discussion with that
erson. Likewise, analytical and heuristic methods for determin-
ng the values of their parameters themselves are defined �and
ssumptions made to simplify� based on the perception of variable
nterdependence. The network formulation is intended to simulate
hese perceptual webs.

The benefit of this methodology is that it allows us to easily
xtend the base simulation model to alternate network
onfigurations—be they patterns for agent interaction or domain
epresentations. Thus, an experimental set consisting of varying
etwork configurations may be easily controlled and executed,
nabling the investigation of the effects of and interactions be-
ween task and organizational structural properties on the design
rocess. Once a matrix has been transcribed a range of mathemati-
al operations can then be applied to it to determine a variety of
ocal and global relational attributes. Examining the network
roperties of a system in this way can be a very informative ap-
roach in understanding its behavior. This network formation is a
ey aspect of the simulation’s utility in studying the impact that
eam and domain network configurations have on the design pro-
ess and in identifying ways to quantify and manage those im-
acts.

3.3.1 Agent Schemata. There are four areas, in determining
hat to do and how to do it, within which agents employ indi-
idualized schemata. These are as follows:

1. Choosing what to solve based on system stage, agent stage,
previously accomplished tasks, and a learned order prefer-
ence

2. Choosing whom to collaborate with based on internal repre-
sentation of agent interdependencies in the form of social
and task network matrices

3. Identifying what parameters to include in the analysis based
on internal representation of agent interdependencies in the
form of social and task network matrices

4. Deciding when to update others based on individual timing
schemata identified in interviews

3.4 Task Representation. The domain models represented
erein are defined around a single overarching mission objective.
n this simulation, all models are defined within the scope of a
eep space interplanetary orbiter. Furthermore, the primary objec-
ive of the orbiter, as defined in the simulation, is to assess the
eological history of a designated planetary target, and so only
ayload options contributing to this objective are included. The
ase mission definition used in these tests is an orbiter mission to
aturn’s moon Enceladus to determine its geological history �see

Fig. 3 Algorithm base-case mission scope
ig. 3�.
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This mission definition was used to establish the scope of the
simulation’s design process and to determine the types of analyses
that required. Modeling the process to a specific class of mission
�deep space orbiter, earth orbiter, etc.� corresponds to actual Team
X procedure and in many ways is requisite �in both simulation and
actual Team X design sessions� given the complexity and scope
possible. In Team X design sessions, mission class significantly
influences analyses, expectations, and team dynamics. In fact,
Team X participants maintain different sets of parameters, tools,
and databases corresponding to various mission classes, and load
those utilities prior to beginning a design session.

Despite the simulation’s definitional focus on a deep space geo-
logical orbiter, the simulation retains much flexibility in defining
the task characteristics. For example, such large influencers as
planetary target, trajectory plan, what payload sensors to include
�including the use of a separable probe�, and others are left vari-
able. Some of these are defined up front in the process as part of
the mission file, and others are determined in the course of the
design process. Additionally, via the network formulation dis-
cussed above, the simulation allows us to define which domain
parameters to include or abstract out of the design process �and by
which agent� as well as the relationships between each parameter.
So, there are a good deal of potential missions we can produce
and numerous representations—from simple to complex—of each
of those.

3.4.1 Definition. Within the scope, then, of an interplanetary
geological orbiter, the main parameters and methods for designing
each subsystem have been identified and representative models
created. In this simulation, each agent maintains its own indi-
vidual domain knowledge, designed and distributed in a manner
synonymous to that observed in Team X. The main direction for
defining subsystem models was established from the data col-
lected from team member interviews. These data were used to
identify the main system and subsystem parameters, trades, objec-
tives, and the methods used to evaluate them, and attention was
given to the approach taken by team members in defining each of
these parameters. These data, though, were primarily descriptive
and so, as the actual models were not available, the mathematical
definitions and databases used in subsystems’ implementations
were taken from texts on space mission plans. The primary
sources of data were Wertz and Larson �22� and public documen-
tation of past space missions.

To better reflect the detail and complexity of team members’
responsibilities, these models were supplemented in two ways.
First, several additional subparameter definitions were included to
capture important input variables of those main parameters iden-
tified in the interviews. Second, many of the important relations
and considerations from Wertz and Larson �22�, as from the inter-
views, were descriptive in nature and, so, to include these inter-
dependencies many of the model equations were parametrically
enriched to reflect the relation described.

3.4.2 Variable Types. There are two types of variable used in
this algorithm. One type, which we will classify as analytic vari-
ables, has specific domain functions defining variables’ behavior.
These variables are deterministic; so given the state of their in-
puts, their behavior is fixed. Approximately 85% of the algo-
rithm’s variables fall within this category. The second variable
type, which we will classify as decision variables, is forward in-
fluencing variables. While the state of related variables influences
the quality of their chosen values, decision variables’ definitions
allow them to be set anywhere in an entire range of values without
being mathematically inconsistent. It is to these variables that heu-
ristic methods from individual learning schemas and collaborative
decision making are applied. Although fewer in number, because
of the flexibility in setting their values in contrast to the determin-
istic nature of the analytic variables, decision variables may be
viewed as the primary system drivers, and they accordingly regu-

late the overall system state.
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The algorithm was designed with the two types of variables to
dd an extra dimension of correlation to the actual work of Team

designers and to enable the instantiation of collaborative meth-
ds. In regard to correlating the algorithm to Team X, the two
ariable types are meant to be analogous to the same general
lasses of decisions engineers make in their design, decisions
ased on methodological analysis and decisions based largely on
xperiential or intuitive understanding of the system. For example,
his may, perhaps, be most readily observed as engineers move
rom individual detailed analysis of their subsystem to a group
iscussion of trades on a shared parameter. In regard to algorithm
ollaboration, decision variables provide a medium in which
gents may negotiate these shared parameters based on their in-
uence on the agents’ respective subsystems. They, then, may find
balanced value between their subsystems’ needs while conserv-

ng mathematic consistency.

3.4.3 Variable Inputs. To enable some experimental control of
ask relationships, the domain models used in this algorithm are
inked to the variable-variable matrices input at the start of the
rogram. Where the matrix indicates a relationship, the designated
ariable is “perceived” to influence the parameter being defined.
here the matrix indicates that there is no relationship, the des-

gnated variable does not influence the parameter.
In defining the set of possible relationships and use of related

ariables, because of the difference in definition, the approach
iffers between analytic and decision variables. For analytic vari-
bles, the task models discussed above, designed to represent
eam X models, are formulated as the base models. They are

aken to be the most connected. So, the maximum number of
nputs for each parameter is defined in those models, and the
etwork with all the possible relationships between them is repre-
entative of Team X’s models. For this variable type, when the
atrix indicates a relationship from among the set of possible

nputs, that variable value is passed into the method and used as
ormal. When the matrix indicates that one of those possible in-
uts is not related, in contrast, a constant average value is passed
n �the median value in the range of possible values�. This is done
o that the current variable value has no effect in influencing the
arameter one way or another, and the parameter value is kept
onsistent and reasonable. For decision variables, because of their
exible definitions, any parameter is capable of being an input.
or these variables, all related variables are used in setting the

earning arrays that are used to determine the variable’s setting.
or more detail on variable types and agent learning, see Ref. �1�.

3.4.4 Problem-Solving Strategies. As in most complex design
nvironments, the problem sets addressed in Team X sessions re-
uire many different analytical approaches. Each approach evalu-
tes the influence of related variables in different ways. In keeping
ith our objective to reflect the approaches and parameter behav-

ors described in our case study of Team X, the algorithm also
ncludes several different analytical approaches �in addition to the
ndividual mathematical definitions used to describe parameters’
rajectories of behaviors�. There are database search modules that
dentify solutions from a set of discrete possibilities given con-
traints and objectives. There are modules that analyze a set of
eritage mission characteristics, determine the degree of similar-
ty, and set variables from the comparison. There are simple opti-

ization routines �quadratic interpolation� and heuristic solvers
or nonlinear multivariate �and multiagent� “optimization.” There
re two iterative loop solvers: one that loops until it converges to
solution that is mathematically consistent and another that loops

hrough modification methods until a set of constraints is satisfied.
inally, there is a multivariate negotiation module that iterates
etween agents until they converge. The heuristic solver and ne-
otiation module are discussed more in Sec. 3.5. In all cases,
odels were designed to reflect the approaches described by team

embers.
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3.5 Team Representation. The team environment, in this al-
gorithm, is achieved through the distribution of social and task
niches among computational agents, each of which represents an
analog Team X participant. Each agent maintains its own methods
and variable sets. They also maintain individualized schemata for
determining the timing and choice of activities as well as collabo-
rative preferences. As they interact, then, a rich ecology of rela-
tionships among and between agents’ actions and task related de-
cisions results. These patterns of interaction arise from the
combination of individual’s schemata and the interactions among
the tasks they choose, and they in turn lead to a more complex
system behavior characterizing the overall search and conver-
gence properties of the system. In this section several key aspects
of the team interactions implemented in this simulation are dis-
cussed, including information updating, sequencing of activities,
collaborative methods, and methods of team facilitation.

3.5.1 Interaction Overview. As in actual Team X sessions, the
agents in this algorithm communicate subsystem information in
essentially two ways. The first is a simple update, a noncollabo-
rative transmittal of some portion of the subsystem’s current de-
sign state. In Team X sessions this occurs primarily via the inter-
nal network, sending and receiving preset inputs throughout the
sessions. It also occurs, though, as information is projected onto
the front screens or announced to the team. The second is through
collaborative dialog, mutual interchange of preferences and pro-
gression toward a commonly agreed upon state. Sidebar discus-
sions may be observed frequently throughout Team X sessions as
individuals work on subsystem trades of mutual interest.

In regard to agent updates, each agent maintains its own sepa-
rate variable list containing all of the parameters used and/or set
by that agent. Although separate, agents’ lists may contain over-
lapping variables. That is, the same variable may be contained in
more than one agent list. However, while several different agents
may use a variable, only one has primary stewardship for setting
that variable’s value. The values of that variable in the other
agents’ lists are received from the one agent responsible for set-
ting it. Their values for that variable are renewed each time the
one agent responsible for it updates their list, and it remains at that
state until it is updated again.

The decision of which agents to update is derived from Sec.
3.3. From the agent-task and task-variable matrices that are input
into the system, an agent-variable network may be derived. This
matrix is then used by the individual agents to determine who
requires updates on each of “their” variables.

The decision of when to update agents’ lists is based on indi-
vidualized schemata designed to approximate the timing and in-
tent of the corresponding Team X engineer. This information was
identified in team member interviews. These schemata may be to
update others at the completion of certain activities at different
stages in the design process or at rough intervals of time given the
design stage.

In regard to agent collaborations, when an agent chooses an
activity that requires collaboration it calls all other agents associ-
ated with that activity. This determination is set in the agent-task
matrix, and those relationships were identified in team member
interviews as members identified with whom they worked with
and on what. In the process of collaborating with each other, all
the variables used by each participant in determining the targeted
variable�s� are updated in each of the others’ lists.

For both updates and collaborations, the webs of time depen-
dent relationships are the result of the combination of individual
interests and schemata, as described in team member interviews.
So, the system-level patterns are a result of these finer scale con-
cerns. It is in this way, by defining individuals and placing them in
a specific environment of interaction, that the patterns of informa-
tion flow and concurrency, team interaction, and system conver-

gence are simulated.
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3.5.2 Task Sequencing. Task layouts were created for each
gent to facilitate the decision of which task to work on and when.
oth the sequencing of tasks and the time allotted for task
ompletion are assigned in these layouts for each agent and each
ubsystem stage—setup, initialization, first full iteration, update,
nd problem stages. To define task precedence, tasks were laid out
n blocks and sub-blocks denoting the temporal sequencing of the
asks. This blocking structure, then, defines which actions are to
recede which others, and which may be executed interchange-
bly with which others at a given point. The determination of this
tructure was made from the logical sequences required by the
ctivities. Each activity, then, in each subsystem stage was as-
igned a time required to complete it. This determination was
ade in consideration of both the activity difficulty and the timing

onstraints imposed by the observed subsystem rates of progres-
ion �refer to Fig. 1�. Between the two, task and time blocking, the
rdering and timing of agent activities are made to align roughly
ith those observed in our case study.
A simple learning scheme is applied to agent blocking as well

o aid in the choice of activities that may be performed inter-
hangeably at a point in time. From analyses of final designs
iscovered during the system’s exploration stage, agents draw an
ssociation between the order of activities taken and the sub-
ystem’s final utility value and number of iterations required to
onverge on the final design solution. From these analyses, a pref-
rence weight is assigned to activities in the block. When an agent
eaches a point where it must choose between two or more activi-
ies that may be performed interchangeably at that point, it uses
his heuristic to decide the ordering of its activity calls.

3.5.3 Collaborative Strategies. There are, of course, many in-
ricacies in the ways individuals collaborate to resolve problems.
n the algorithm, there are two methods used to simulate the types
f collaborations observed in our case study of Team X: 1. an
terative negotiation model and 2. a direct negotiation model. The
irect method is intended to approximate discussions in which
articipants openly present their preferences, weigh alternatives,
nd, from that information, come to an agreement directly. The
terative method is intended to approximate discussions in which
articipants offer solutions and countersolutions until they con-
erge to a shared solution. Both methods are extensible to mul-
iple variable analyses �from 1 to 16 variables in our implemen-
ation� and permit the participation of multiple agents.

3.5.4 Method 1: Direct Method. Our approach to collaborative
greement is to recognize that many of the collaborative decisions
ade in the early or conceptual phases of design are based largely

n experiential or intuitive understanding of the system rather
han methodological analyses. Individuals discuss their prefer-
nces, the relative impacts on their portion of the problem, and
rade-offs qualitatively to get a “feel” for the shared effects of
esign decisions. This greatly simplifies required analyses and en-
bles team members to come to a rapid agreement on shared pa-
ameters to accelerate convergence. This was a common form of
nteraction observed in Team X sessions.

To accomplish this type of collaborative interaction, participat-
ng agents review potential solution options and heuristically as-
ign a utility value to them. These heuristic evaluations are based
n the agent learning schemes �see Ref. �1� for more detail�. In-
ividual utility values are then aggregated, and the solution option
ith the best overall utility is used to set the variables values.
The procedure for this collaborative method begins when an

gent calls this method, identifying the variable�s� to be deter-
ined. Based on the subsystem’s agent-task matrix, participating

gents are called, and each of the participating agents then indi-
idually evaluates the solution option, assigning it utility values
or each of the decision variables being evaluated. Once each
gent has assigned utility values for each decision variable under
onsideration, they are aggregated to form a total utility value. If

his loop occurs during the system’s exploration stage an addi-
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tional term is added to the aggregate utility value to encourage
divergence. That is, the aggregated utility value is weighted to
encourage the selection of variable ranges not previously ex-
plored. In the end, the result is an aggregate utility value used to
judge the overall fitness of the variables’ settings in view of all
participating agents. This process is continued to evaluate the
overall utility for each variable-range configuration. If the result-
ing utility value is the best found to this point in the process, the
decision variables are assigned a value within their designated
ranges. An overview of the solver method is shown in Fig. 4. For
more detail see Ref. �1�.

3.5.5 Method 2: Multivariate Iterative Negotiation. In contrast
to the heuristic evaluations of the direct agreement method dis-
cussed above, the iterative negotiation method is intended to ap-
proximate collaborations in which subsystem trade-offs are based
on methodological analyses. Rather than qualitatively discussing
the pros and cons of solution options, individuals analyze the
problem and present solution options. Following which the other
agents will do likewise, making some concessions based on oth-
ers’ requirements, and will return with an alternate solution op-
tion. This process continues until an agreement is reached. This
method of interaction was also observed in Team X sessions.

In this method, the evaluation methods used by participating
agents may be different for each agent. They may be individual-
ized optimization routines, rule sets, or even the heuristic method
described above. In this approach, participating agents individu-
ally analyze and optimize countersolutions that make concessions
designed to step individual solutions toward convergence.

Following method initialization, the process begins with each
participant making an initial assessment—that is, determining an
“optimal” value or combination of values—of the chosen vari-
able�s�. Agents are then called individually to evaluate and pro-

Fig. 4 Schematic overview of the direct heuristic solver
method
pose revised variable values. In doing so, agents make conces-
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ions in their choices of values to increase the overall “closeness”
f values between participating agents. The closeness of values is
ased on the percentage difference between agents’ values given
y

�% = 1 −

�
i=1

n
Vi,min

Vi,max

n
�1�

here �% is the percentage difference, Vi,min is the minimum
roposed value for variable i, Vi,max is the maximum proposed
alue for variable i, and n is the total number of variables.

Concession requirements, then, are given by a step size �defined
n a simple linearly decreasing schedule� that dictates the change
n �%. This gives agents flexibility in setting the values of each
ariable. They may, for example, set one value to converge with
ther agents’ and the other values to diverge, or they may set all
alues to converge with other agents’ as long as the resultant value
or �% decreases by the set amount. In this algorithm, the opti-
ization routines used in conjunction with the iterative negotia-

ion method are programed with a preference for adjusting values
oward those of other agents. Nevertheless, because of the inter-
ependence between variables, adjusting some values toward
ther agents’ will require setting others further away. These inter-
elationships may be intricate and complex, and the balance of
alues between variables affects the utility of each agent differ-
ntly. This approach to concessions allows agents flexibility in
ursuing the balance of variable values that best optimizes their
ndividual utilitie, and ultimately allows for a balance between
gents’ preferences to emerge.

Agents continue to individually revise their proposed variable
alues until the set of values falls within the specified range of
roximity. In our implementation, when �%�0.1 the loop closes
nd the values for all participants are set to that of the final agent.
n overview of the iterative solver is given in Fig. 5.

3.5.6 Team Facilitating. There are three ways in which the
ystems engineer directs team progression in this algorithm. The
ystems engineer sets the system stage, regulates the system ob-
ective weights, and initiates the problem loop. These three sys-
ems roles are meant to approximate the primary ways that the
eam leader and systems engineer were observed facilitating team
rocesses and directing individuals’ foci.

The first method is through the designation of the system stage.
ust as each subsystem agent keeps track of its individual stage in
he design process, the systems engineer keeps track of the team’s
oint in the process. The system stage is used by individual agents
n their determinations of what actions to choose as well as in the
ystems agent’s determination of whether or not to initiate the
roblem loop.

The second is through the designation of objective weights. The
ystem objective weights are used to focus agents’ attentions on
chieving specific system objectives, such as driving down the
ass or cost of the ship. To accomplish this, they are used to
eight the utility values derived for each subsystem objective in

gents’ heuristic evaluations of decision variables. This gives pref-
rence to the optimization of particular objectives in these evalu-
tions. At the start of the design process, the default settings for
ystem preferences are for maximizing subsystem objective utili-
ies and minimizing cost. As the team progresses and the systems
ngineer identifies problem areas, areas in which the design is
eficient and/or persists in being deficient in meeting the custom-
r’s requirements, the weights are adjusted to give increased pref-
rence to those areas. The systems engineer can, in this way, di-
ect the team toward better meeting the customer’s mission
equirements.

Finally, the third method is through initiating the team problem
oop; the purpose of which is to get each agent to work in unison

n driving the system solution to better meet the customer’s re-
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quirements. The purpose of the loop is to simulate team wide
discussions that are initiated when the solution needs to be redi-
rected or a focused team effort is needed to drive the solution in a
certain direction. Periodically throughout the design process the
systems engineer evaluates the state of the mission solution vis-à-
vis the customer’s requirements. It does this by checking the sys-
tem status on each of the system objectives against predefined
value limits. These objective value limits specify how much the
system is allowed to exceed the customer’s requirements before
initiating the loop and are initially wide in the design’s earlier
stages and gradually tighten as the end of the session nears and/or
the team nears convergence. If one or more of the objectives ex-
ceed the limit, the systems engineer updates the system objective
weights and initiates the problem loop. Once the loop is initiated,
each agent’s stage is set to the problem stage and the system loops
through each agent, which in turn completes each of their problem
stage activities. In this way, the entire agent team makes a con-
certed effort to reposition the solution to better meet the custom-
er’s mission requirements.

4 Model Verification
The objective in creating these computational models is to cre-

ate an environment that simulates the trajectory of behaviors and
interactions representative of those that occur in actual Team X
design sessions. Extensive efforts were made to design and verify
the fine scale behaviors—those of individual parameters and
agents—such that they correspond to the behaviors described and
observed in our case study. It is from the interaction of these finer
scale behaviors, then, that the system-level patterns of behavior
result. Therefore, to confirm that the computational simulation
exhibits comparable ecologies of relationships, an examination of

Fig. 5 Schematic overview of the iterative negotiation method
the system-level trajectories of behavior was conducted. The ques-
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ion being asked is do the fine scale interactions indeed lead to
ystemic patterns that are representative of those observed in
eam X? To do this, an examination of the two foci of this
tudy—the social and task domains—was performed and is dis-
ussed.

To make this comparison, algorithm output from 100 design
uns was collected and averaged. Mission input parameters for
ach of these runs were randomly generated within the scope of
he defined mission. These data were then contrasted against ob-
erved data and data collected about actual space missions.

The verification presented in this paper is an initial examination
o ensure that the fine scale definitions lead to the system behav-
ors desired. For social behaviors, the network patterns of interac-
ions from agents’ combined collaborations are examined. For task
ehaviors, the primary system drivers �as identified in Team X
ember interviews� and subsystem mass distribution are exam-

ned �chosen for the availability of this information�. Further veri-
cation assessing the algorithm’s predictive accuracy will follow

n succeeding studies.

4.1 Social Behaviors. To verify that the resultant environ-
ent of social interaction from our computational models is com-

arable to that of Team X, a comparative investigation of the
elation of Team X’s social networks to those of our simulation
as performed. The point of this examination of social structure is

imply to verify that the simulation demonstrates similar struc-
ures of interaction. That is, do the combinations and timing of
gent activities lead to team social networks similar to what may
e observed in actual sessions?

Observations of two separate and significantly different—in
oth difficulty and subject—Team X proposals were used for this
omparison. The design related interactions occurring throughout
hese observed sessions were documented, from which social net-
ork matrices were created describing the team interactions at
arious points throughout the process. The matrices were then
nalyzed to identify recurring social interactions. For the algo-
ithm, equivalent information on agent interaction was outputted
nd averaged for 100 design runs.

Figure 6 shows the overall social networks—the total interac-
ions occurring during all three sessions—for the two observed
roposals and the algorithm’s output. The three cases—the two
bserved cases and the algorithm’s average output—were com-
ared. All of the algorithm’s resultant social ties corresponded to
t least one of the two observed social networks and of those ties
ound to be consistent between the two observed cases 95% were
lso found in the algorithm’s network, meaning that the same
ubsystem agents in the algorithm were interacting as those that
ere observed to interact in the actual design environment. Fur-

Fig. 6 The observed and algorithm social network ties fo
matrices are weighted „the weight indicates the amount of
„this is because the exchange of information in these intera
hermore, these matched ties consisted of 75% of the network’s
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total ties where matched ties between the observed sessions con-
sisted of 73–76% of the ties in those networks. The overall net-
work of agent interaction, therefore, corresponded quite closely to
that of the observed cases. In addition to the existence of relation-
ships, the strength of the ties also seemed, in the main, represen-
tative of those observed.

Agent interactions during three intermediate stages of the
design—corresponding to the stages of system convergence des-
ignated in Fig. 1—were likewise compared against the observed
cases. The distribution among the three groups for each design
stage was found to be similarly correlated �for more information
see Ref. �1��.

4.2 Task Behaviors. The algorithm’s domain outputs were
also investigated to verify that the networks of task interactions
from our computational models are representative of those of ac-
tual interplanetary space mission plans. The question being asked
is do system parameters resulting from the algorithm’s designs
exhibit similar magnitudes to those of real space missions and are
they similarly apportioned relative to each other? The individual
fine scale subsystem parameters were, as described in Secs. 1–3,
carefully designed to simulate the behaviors and to include the
interactions identified in our case study of Team X. As a prelimi-
nary check, these were examined to verify that, in combination
with all the other system variables in a design, they continued to
fall within the range of values for which they were intended.
Having then verified the individual fine scale behaviors, the next
question is do they combine and interact to produce aggregate
system-level values that are comparable to those found in real
space missions?

The first examination made is of the top system drivers. The
system drivers used in this comparative analysis were those iden-
tified in team member interviews and represent the top five most
frequently identified system drivers. They are mission target, mis-
sion life, cost, mass, and power. The algorithm’s values were av-
eraged over 100 design runs. Data for these system parameters are
given in Fig. 7 for the Cassini mission, the most closely related to
our task definitions, and for the algorithm.

The comparison of the results is somewhat qualitative; how-
ever, the algorithm’s results do fall closely within ranges compa-
rable with those of the heritage missions. Recall that the domain
models used in the algorithm were formulated within the scope of
a planetary orbiter sent to Saturn’s moon, Enceladus, and its
neighboring rings. The algorithm’s prescribed mission require-
ments, therefore, fall most closely with those of the Cassini mis-
sion, also an interplanetary orbiter dispatched to the moons and
rings of Saturn. So, they share the same general target and similar
science objectives �the algorithm even included analysis for an

ll sessions in each proposal. Note that the data in these
e individuals interacted, 1=10 min… and are nondirectional
ns was dominantly collaborative „two way…….
r a
tim
ctio
additional probe as with Cassini, albeit the science undertaken by
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he algorithm’s mission definition was rather less extensive than
hat of Cassini�. Correspondingly, the average values for mission
ifetime, cost, mass, and power are seen to approach, while re-

aining somewhat less, those of the Cassini mission. The combi-
ation and interaction of individual variables in the algorithm’s
esigns of its space mission led to system values corresponding
icely to those of Cassini, a comparable mission.

The second examination looks at the percent distribution of
ubsystem masses. The mass distributions for actual space mis-
ions were taken from Wertz and Larson �22�, in which they ana-
yzed 24 different space missions. These space missions were
redominately earth orbiters, and so some deviation for interplan-
tary missions is to be expected. For example, many of the earth
rbiter missions evaluated had a negligible or nonexistent propul-
ion system. To account for this, both actual and algorithm per-
entages have been adjusted to not include propulsion masses for
his comparison. An increased mass apportioned to payload is
nother deviation that is to be expected, the range of payload
asses for interplanetary missions differing significantly from
ission to mission. Nevertheless, despite the expected deviations,

he mass distribution between subsystems is representative
oughly of space missions generally and the algorithm’s results
ligned very nicely with those of the actual missions. Figure 8
hows the resulting mass distributions for the algorithm, again
veraged over 100 design runs, and the space missions examined

ig. 7 Magnitudes of the primary system drivers for Cassini
nd the algorithm

ig. 8 Percent mass distribution for 24 space missions „light
ine… taken from Wertz and Larson †22‡ and the algorithm „dark

ine…
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in Ref. �22�. As an indication of design output, a small extract of
typical design outputs is given in Table 3.

For more detailed information of simulation methods and veri-
fication testing see Ref. �1�.

5 Discussion and Conclusions

5.1 Methodology Review. The simulation approach pre-
sented in this paper is designed as a platform to investigate the
complex and dynamic environment of interaction associated with
the design of complex systems. The simulation is designed to
emulate the complex and dynamic characteristics of the real world
design environment of NASA/JPL’s Team X. Benchmarking Team
X provides a medium wherein to define and verify realistic and
representative design models. Using Team X as a point of refer-
ence in model creation provides insight into a range of problem-
solving requirements, collaborative drivers, issues in the sequenc-
ing and timing of activities, and how people bring them together.

Our approach is to create rich and detailed models of these
myriad interdependencies. For the problem domain, this includes
identifying the primary parameters, their behaviors and relation-
ships, and then distributing them appropriately throughout the
system—both physically �knowledge and stewardship of the pa-
rameters� and temporally �coordinating the time function of inter-
action�. For the team, this includes defining the primary types,
timing, and distribution of interactions among agents—capturing
the knowledge flow, collaborative decision making, and team pro-
cedures found in actual design sessions. And then, through the
system environment created in the distribution and interaction of
these team building blocks, complex behaviors and characteristics
representative of the actual environment emerge. The result is a
system that more closely approximates the complex characteris-
tics typical of the real design environment.

There are a few distinctive features of this algorithm and ap-
proach that make it particularly well suited to the investigation of
the interplay between the task and organizational interdependen-
cies frequently found in collaborative design. First are the detailed
task models. The primary parameters—their behaviors and
relationships—of the actual solution space were thoroughly mod-

Table 3 Small sampling of the simulation’s design output

Parameter Value

Launch vehicle AR 44 I
Launch date Aug. 2024
Bus cost $348 M
Orbital distance around Enceladus 1.01�107 miles
Min tech risk level 3
Trajectory duration: phase 2 6.7 years
Eclipse time 7.14 h
Orbital eccentricity 1.65
Flight software language FORTRAN

Flight software length 300 KLOC
Computer SWRI SC-2A
Data volume 1.2 Gbits
Throughput 71.4 Mips
IR ground resolution 59.4 m
IR aperture 0.40 m
Communication duration 2.68 h
Phase D length 6.2 years
Ground team size 48
Antenna No. 1 gain 42.4 dBD
RTG mass 60 kg
Power BOL 6040.6 W
Propulsion system GDAIS ISE
Propellant consumed: phase 2 255.4 kg
Solar pressure �av� 76.2 N /m2

Angular impulse: phase 2 507.6 N m s
Torque dump 0.67
eled in this simulation. Few computational organization studies
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ncorporate detailed task models exhibiting the intricate behaviors
nd interactions characteristic of real world design. These models
nable a richness of interaction not achievable in simpler domain
epresentations. Second is the breadth of collaborative and
roblem-solving strategies employed by agents in this algorithm.
nformation is transferred, both directly and indirectly, through
ariable updates, heuristic collaborations, and iterative negotia-
ions. Parameters are resolved through direct mathematical defini-
ions, database searches, analogical comparisons, iterative solvers,
inear optimizations, and multivariate heuristic optimizations. The
ange of task and agent interaction types lends to the richness of
he environment of interaction and is an essential characteristic of
omplex design. Third and lastly are the flexible network-based
efinitions of the task and agent structures. These make it possible
o easily adjust the base simulation model to alternate task and/or
ocial network configurations, thus enabling the experimental con-
rol and investigation of the effects of and interactions between
ask and organizational structural properties on the design process.

5.2 The Simulation as a Design Tool. Although the primary
oal in developing this simulation was the creation of a platform
o enable investigation of design interdependencies, it may also be
iewed as an exploration and demonstration of a methodological
pproach to the computational design of complex problem do-
ains. Using the distributed collaborative approach described

bove, this platform has been shown to be effective at producing
ealistic space mission plan designs. It successfully synthesizes a
ich and diverse set of domain interests, and it successfully brings
ogether the distributed and individualized interests and problem-
olving approaches developed for and infused in the current
pproach.

Effectively extending this approach to practical design use
ould require some adjustments to the presented algorithm. Two

mportant limitations in the current algorithm design are �1� the
fficient generation of rich domain models and �2� the extension
f the agent infrastructure to alternate design domains. Regarding
he first limitation, in the presented implementation domain mod-
ls were custom designed as representative approximations of ex-
sting models and thus constituted a significant labor burden. So-
utions to mitigate this cost may include the development of
nterfaces to existing domain models and/or tools to quickly build
he desired models. Regarding the second limitation, the simula-
ion presented was designed for simulative performance as op-
osed to computational efficiency and statically coded to suit the
argeted domain. A possible redesign may modularize possible
gent interaction and capabilities to enable customization and re-
se.

5.3 Concluding Remarks. There is an enormous potential for
nhanced efficiency and robustness through the structuring of
vailable resources, a potential that is increasingly pronounced as
he complexity of the task rises. Better understanding the role of
elational properties among and between task and organizational
omains should improve our ability to predict and design for fa-
orable emergent and dynamic organization properties, ultimately
eading to methodologies that better account for task complexities
nd improve the search for and evaluation of innovative solutions.

The simulation presented in this paper provides a flexible and
obust instrument for investigating properties characteristic of the
omplex set of interactions inherent in the collaborative design of

complex system. The study presented in this paper is a founda-
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tional part of a larger research agenda, the aim of which is to
move toward a more precise and rigorous understanding of col-
laborative design, and its impact on the way we approach design
management, teamwork, and computational design.
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